

Development Standards & Practices Used
List all standard circuit, hardware, software practices used in this project. List all the
engineering standards that apply to this project that were considered.

 Hardware and Standard circuit:

● Use of Raspberry Pi Zero W microcomputer to control each rack module
○ Will communicate with a more powerful Raspberry Pi acting as a central

server to receive status updates for its rack
○ Using a pre-fabricated strip of WS2811 LEDs which support a wide range

of colors and have optimized driver library support on the Pi
● Support for at least 50 RGB LEDs per rack module

○ Be cognizant of the power-draw requirements for the modules, to
ensure reliability of the circuitry in the worst-case scenario

○ Rack modules are designed to be as easy-to-assemble as possible,
allowing additional racks to be created by library staff in the future

○ Provide sufficient power for both the Pi and the LED strip in a combined
circuit, to simplify construction and reduce use of wall outlet real estate

Software practices:

● Documentation
○ Code that is at all ambiguous should have block or inline comments

preceding it.
○ All modules and programs should have README files detailing usage,

system requirements and dependencies
● Coding Standards

○ Package and Module names should be all lowercase
○ Class names should follow CapWords convention
○ Numerical constants should be made and used as variables. (i.e., no

magic numbers)
● Version Control

○ Consent is obtained from both branch owners before resolving a merge
conflict.

○ Must obtain consent from entire team before merging a branch, or
committing into Master

SDDEC20-02 1

Summary of Requirements

List all requirements as bullet points in brief.

Requirements:

● RGB LEDs that display the status of laptops, tablets and equipments
● Central Raspberry Pi that communicates with other Raspberry Pis

○ Master/Follower Technology
● Each device rack should have its own Raspberry Pi.
● Each bagged device should have a corresponding LED
● All Raspberry Pi code should be in Python.
● The system should be integrated with ISU LibCal API.
● System Scalability for future equipements.

Applicable Courses from Iowa State University Curriculum
Software:

● ComS 339 (Architecture)
● ComS 319 (APIs)
● ComS 309 (GIT)

Hardware:

● CprE 288 (Embedded Systems)
● EE 201/220 (Circuits)

SDDEC20-02 2

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your Iowa
State curriculum in order to complete this project.

Software:

● Python
● LibCal

Hardware:

● Soldering
● Micro-Controllers

SDDEC20-02 3

Table of Contents
1 Introduction 6

Acknowledgement 6

Problem and Project Statement 6

Operational Environment 6

Requirements 6

Intended Users and Uses 6

Assumptions and Limitations 7

Assumptions 7

Limitations 7

Expected End Product and Deliverables 7

2. Specifications and Analysis 8

Proposed Approach 8

Design Analysis 8

Hardware 8

Software 8

Development Process 8

Conceptual Sketch 8

Machines 9

Modules 9

3. Statement of Work 10

3.1 Previous Work And Literature 10

3.2 Technology Considerations 10

3.3 Project Proposed Milestones and Evaluation Criteria 10

4 Testing and Implementation 11

4.1 Interface Specifications 11

Software 11

4.2 Hardware and Software Testing 12

4.3 Functional Testing 14

SDDEC20-02 4

4.4 Non-Functional Testing 14

4.5 Process 15

4.6 Results 16

5. Closing Material 16

5.1 Conclusion 16

5.2 References 16

5.3 Appendices 16

Appendix 0: Definitions 16

Appendix I: Manual 17

Assembling a RackPi 17

Installing the rackpi 17

Configuring the rackpi 19

Configuring the admin interface 19

Appendix II: Schematics & Design Documents 19

SDDEC20-02 5

1 Introduction

1.1 ACKNOWLEDGEMENT

On behalf of the sddec20-02 team, we would like to acknowledge and thank the individuals that have
provided support and assistance throughout the project development.

Library staff: David Harborth, Eric Schares, Lisa Smith, Mitch Steimel.
Team Advisor: Md Maruf Ahamed.

1.2 PROBLEM AND PROJECT STATEMENT

Problem statement

Parks Library lends over 200 individual laptops and tablets to ISU's student body through its
Tech Lending office. The status of each individual machine, such as Available, Checked Out, Overdue,
No Longer Lending, etc, is kept in the booking software LibCal, and also maintained on printed out
sheets that are placed in each vacant slot in the charging rack. This current system makes maintaining
at-a-glance information about the devices tedious as one must replace the sheets of paper with updated
ones.

Solution approach

This project aims to replace the printed sheets of paper with RGB LEDs. Each RGB LED will
display a color that will correlate to the status of each laptop. To do this, a Raspberry Pi will be used to
communicate with the booking system API and pull the current status of each machine. These updates
will then be sent to Raspberry Pis on each device rack or bar which will update the LED associated with
the changed device. This will allow for a quick and easy way to identify the status of various devices at a
glance.

1.3 OPERATIONAL ENVIRONMENT

The final implemented system will be located in the Technology Lending office in Park’s
Library. The system is not expected to be exposed to any extreme temperatures or weather. The
Technology Lending office was kept clean by the Iowa State University cleaning staff, and the room the
implemented system will reside in is air conditioned.

1.4 REQUIREMENTS

The requirements for the project are as follows.

● The system must be able to support more than 500 unique devices.
● The status of each device must be updated autonomously from the LibCal booking API.
● The rack modules should be simple enough that the library could make more if it’s inventory

were to expand.
● Each rack module must be able to support at least 20 RGB LEDs.

1.5 INTENDED USERS AND USES

Once implemented, this project is intended to help the Park’s Library staff, and student
employees working in the Tech Lending office quickly and reliably determine the status of any device
available for loaning. It is expected that the primary form of interaction between the intended users and

SDDEC20-02 6

the system implemented will be purely visual, as the color status of the LEDs will be automated.
However, if new devices are acquired by the Tech Lending office, a member of the Park’s Library staff
will be required to register the device in the system.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

● The status of a device will not change very often (no more than 30 laptop status changes per
hour on average)

● IDs mostly be assigned consecutively i.e. l001, l002, l003, etc.
● An ID might be reused if an old device is replaced
● New devices will be added several times a year so our system should be able to scale

Limitations

● The status LEDs will only update every 3o seconds so they could show an old status for up to 30
seconds.

● The hanger case design does have the drawback of the LEDs staying in fixed positions, while
the loaner items will likely not.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

We will deliver a system of micro-controllers and LEDs that link to a central software. A user
should be able to modify the status of the LEDs, corresponding to the status of a loanable item. A bill of
materials and instructions for the assembly of circuitry for the project will be provided, but actual
installation of modules will not be completed this semester. The items mentioned will be delivered to
the customer on Nov 19th, 2020.

We will deliver software that will use a Raspberry Pi, to communicate to other Raspberry
Pi-Zeros, to modify the status of the LEDs. The program is to be used by the check-out desk staff, so it
will be stable and easily understandable. The software will also have a procedure to add new loanable
items to the system. This will be delivered to the customer on November 19th, 2020.

SDDEC20-02 7

2. Specifications and Analysis

2.1 PROPOSED APPROACH

Our team’s approach to the project is to designate a Raspberry Pi Zero for each computer rack
to operate the LEDs (there are about 20 computers per rack so each rack-module Raspberry Pi Zero will
operate about 20 LEDs). F0r the bagged equipment on racks our team’s plan is to set up a PVC pipe
with LEDs poked through, where the LEDs correspond to device IDs. This should provide enough space
for the labels needed for each of the loaner items. It does have the drawback of the LEDs staying in
fixed positions, while the items will likely not. Connected to each Pi will be our Master server which
will manage each rack Pi. It will control the flow of device data from and to each rack Pi.

From the beginning we knew we would need to use microcontrollers to connect the data from
the LibCal API to operating the LEDs. Although other microcontrollers may work, our team decided on
a Raspberry Pi as it is affordable and comes in many different levels of complexity and functionality.
Each rack and bar will have a lower-complexity raspberry pi, each of which connects to a central,
higher-complexity Raspberry Pi which communicates with the LibCal API and sends out device updates
to all other Pis.

2.2 DESIGN ANALYSIS

Hardware

We have decided to use an off-the-shelf strand of individually addressable RGB LEDS which
can be controlled by the rack pis. Using off the shelf pre-fabbed parts makes it easier for our clients to
assemble new rack Pis as they expand their inventory down the road. Each module of a Each module is
powered via a 5-volt, 5-amp power supply, which covers our worst-case power draw scenario.

Software

For the software design, the architecture is divided into two main modules, Master Pi and Rack
Pis, which are controlled by higher-complexity and a lower-complexity Raspberry Pis respectively. The
lower complexity Pis which are the Rack Pis, handle the direct control of the LEDs and also receive
updates from the higher-complexity Master Pi. The Master Pi is central to the entire process as it
retrieves and sends updates from the LibCal API to the Rack Pis, controls the Administrative Web
portal, and maintains and queries a key-value LevelDB database.

2.3 DEVELOPMENT PROCESS

Due to our team’s varying experience with some of the technologies required for the project,
we have decided it is best to follow the Agile development process. This allows us to continually
improve our design as we acquire new information regarding the project. Additionally, by using this
development process, we are able to react and adapt to changes in requirements from the client.

2.4 CONCEPTUAL SKETCH

SDDEC20-02 8

Figure 2.1: Software Architecture Block Diagram

Figure 2.2: More detailed look at LED Mapping/Device Status Manager and its interactions internally
and externally with other modules.

Machines

MasterPi - The central Raspberry Pi which manages the Pis, runs the web interface server and
communicates with the libcal api.

SDDEC20-02 9

RackPi - The Raspberry Pis running in the individual racks.

Modules

Rack Pi

- SubPi module: The SubPi module is installed on a Rack Pi and handles registering the
Rack Pi with Master Pi as well as receiving LED updates, and forwarding them to the
LED Driver Module. (Python)

- LED Driver Module: The LED Driver Module is responsible for controlling and
updating the physical LED colors of the LEDs connected to its Rack Pi. (Python)

Master Pi

- Pi Communication Module: This manages all of the Rack Pis. It receives and forwards
registrations from Rack Pis to the LED Mapping Status Manager (LMSM) module, and
it forwards status updates from the MDSM to the Rack Pis. (Python)

- LED Mapping Status Manager: The LED Mapping Status Manager is central to the
overall communication within the Master Pi module. It has the following modules.

- Management: The Management module interfaces with the Rack Pis. It is
responsible for receiving registration requests from new Rack Pis and
registering them in the database, it is also responsible for checking for status
changes and sending status updates to the Rack Pis. (Python)

- Ingest: The ingest pulls updates from the LibCall API Client Module and
compares them with the the current data in the LevelDB database, updates
database accordingly. (Python)

- Admin Module: The Admin module provides a useful interface for other
modules to access the LevelDB database, and is responsible for notifying the
Management module when changes are made to mappings. (Python)

- Database Module: Handles setting and retrieving values from LevelDB
database.

- LevelDB Database Module: This module is responsible for storing data about the Rack
Pis (such as ID, LEDs and Health Status) and the Status-To-Color mappings currently
supported.

- LibCal API Client: Responsible for interfacing with the LibCal API. Periodically
retrieves device status data.

- Admin Web Interface: Responsible for providing an Administrative Web Page where
users can check Pi and Device statuses, review system logs, update/add/delete
status-to-color mappings and register new devices. Contains a Backend RestAPI
written in Python which interfaces with the LED Mapping Status Manager, and a
frontend UI written with HTML, CSS, Javascript which uses Ajax to interact with the
backend. See Section 4.1.

The entire Master Pi module is booted up via Docker.

SDDEC20-02 10

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

There were little to none, exact existing projects, and there was no previous work done on this
project, by another team. There was, however, a useful project we found in Robinson’s, Raspberry Pi
Projects, called Disco Lights. The project was powering LEDs to the frequencies of music/sound. It gave
valuable python code and circuit design

“Chapter 11 Disco Lights.” Raspberry Pi Projects, by Andrew Robinson et al., John Wiley & Sons
Ltd, 2014, pp. 251–274.

3.2 TECHNOLOGY CONSIDERATIONS

1. Our project uses Http Polling for libcal which means the leds could have stale data while we
are waiting to make our next set of requests.
Alternatives: None, libcal does not support anything else

2. Our project uses Http servers on the Master and Rack Pis so that either end can initiate a
connection. This means we don’t have long lived connections (avoids issues like TCP hangups)
Alternative: Sustained TCP connections

3. Our project uses key value storage instead of a traditional database which means if we need to
make more complex queries they take a little longer to run.
Alternative: Traditional database

3.3 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

1. A single Raspberry Pi with an led that can be mapped to a libcal resource’s state by the admin
interface.

2. Multiple Raspberry Pis that receive live updates everytime we poll libcal and the admin
interface is secured.

3. Logs and health checks from the raspberry pis can be viewed in the admin interface.
4. We have a custom Raspbian image for the Raspberry Pis.

4 Testing and Implementation

SDDEC20-02 11

4.1 INTERFACE SPECIFICATIONS

Software

In order to interface with the API, an admin web portal was created. The following image shows a
simple debug page used to test communications with the back-end API.

Figure 5.1: Debug Page on Web Interface

The console output on the right is the result of running the “Get All Pi Clusters” API test. The console
output shows the AJAX request, followed by the API’s response. Currently there are only 2 pi clusters in
our test database, however other devices will show here as more are added.

SDDEC20-02 12

4.2 HARDWARE AND SOFTWARE TESTING

For software testing we are using a combination of unit tests, integration tests and system tests.
For each module we created unit tests to test the most important methods. Then we create integration
tests at the module level. And then we have a system that tests all of the modules together.

For development we use containers to simulate the master and rack pis and we have a mock api
server which simulates the libcal api. The mock libcal api changes the statuses of resources frequently
so we can see how the system responds to updates. This allows us to test in a very realistic
environment while not having to each have our own raspberry pi setup.

SDDEC20-02 13

4.3 FUNCTIONAL TESTING

Unit testing:

1. Libcal AP

i. Test that all the Libcal items are pulled.

2. Rest API

i. Test that all the endpoints can be called.

The unit test code below shows the webapp RestAPI.

The code tests various functionalities such as getting/deleting a pi, getting a pi
led colors and making sure they are valid, mapping/unmapping a pi led to a
resource, getting resources... etc.

SDDEC20-02 14

The image below shows the console output of the unit test case above.

ii. Test that each endpoint calls its level DB method.

3. Level DB

i. Test that the database can be created.
ii. Test all methods that modify/insert/delete data from the database.

4. Pi communication

i. Test that slave pis register themselves with master pi.
ii. Test that that pis are always listening to updates from master pi.

5. LEDS

i. Test that LED can display any selected status color.

6. Admin GUI

i. Test that all the Rest API endpoints can be called using the Admin GUI.

SDDEC20-02 15

Integration Testing:

· Test that when the Libcal API is called all the items are pulled and the database is
updated. Additionally, the slave pis receive the new information from the updated
database and the Pi LEDs are updated.

· Test that when the Admin GUI calls an endpoint, the Rest API calls the Level DB
method for that endpoint and the right values are returned to the Admin GUI.

· Test that when the Admin GUI calls an endpoint to update mapping colors, the Rest
API calls the Level DB method to update the mappings, the mappings are updated in
the database, Pis receive the updates and pis update the LED colors.

4.4 NON-FUNCTIONAL TESTING

Our main focus for non functional requirements are user experience and stability. For user experience
we are going to pull in a volunteer and have them try to assemble our project to make sure we have
enough documentation. For usability we are going to run the system for a day or so and see if it
encounters any errors.

4.5 PROCESS

Our software testing process is fairly simple. We use gitlab ci to run all of our tests (in no particular
order) every time we push.

SDDEC20-02 16

4.6 RESULTS

Our unit tests almost always pass and on the few occasions where they fail the person who broke them
quickly fixes the code or updates the test to match the new state of the code.

SDDEC20-02 17

5. Closing Material

5.1 CONCLUSION

The project goal for our team was to build a functioning and scalable device loan status display
for the Tech Lending center at Parks Library. This display would link each loanable device to an LED
which will display a color corresponding to the device’s current status (i.e., Booked, Reserved, etc.).

It was necessary to handle two cases when it came to the display of the LEDs. First there are
racked items that are placed out on sets of 20 shelves. This case is simple to handle as we will be able to
easily attach one LED on each shelf for the device on said shelf. The second case is more difficult as the
devices are in bags and hung on bars. The difficulty arises due to the fact that the bags are checked out
with the item (negating the possibility of attaching LEDs to the bags), and each bar doesn’t have a set
number of devices, they can range from 20-50 devices per bar. Thus, we decided to create a PVC
enclosure to fit on the bars with holes for LEDs. See Appendix II figure 6.2.

For our software side, our goal was to connect to the LibCal API which housed all of the live
device data including ID numbers and statuses, and then map that data to a Pi, and from that Pi to an
LED. We achieved this by constructing a Leader-Follower architecture in which there is a central
Raspberry Pi that runs the Web Interface, retrieves data from the LibCal API and forwards updates from
both to the Rack Pis.

Overall, our team has made significant progress on our project but due to the unexpectedly
shortened semester due to Covid-19, we were unable to complete the last phase of the project;
installation. However even with this being the case, we are confident that we have designed our project
in such a way that anyone should be able to follow our installation instructions and set up the system.

5.2 REFERENCES

- Andrew Robinson et al., “Chapter 11 Disco Lights.” in Raspberry Pi Projects, by Andrew
Robinson et al., John Wiley & Sons Ltd, 2014, pp. 251–274.

5.3 APPENDICES

Appendix 0: Definitions

SDDEC20-02 18

Term Definition

GPIO General-Purpose Input/Output

LevelDB Key/value store API used to store device mappings to LEDs

LibCal Library Scheduling API used by Parks Library and Tech Lending

MasterServer Central server managing RackPis and LibCal connection.

Appendix I: Manual

Installing the rackpi

This is basically the same as installing regular raspbian except you have to use our custom image.

To get the custom image go to https://git.ece.iastate.edu/sd/sddec20-02/-/tree/rackpi-image and make
sure that rack-pi image is selected in the drop down. Next click on the zip file (the date may be
different).

Click the either of the two download buttons.

SDDEC20-02 19

Pi Zero A smaller and more affordable Raspberry Pi Model

PWM Pulse-Width Modulation

RackPi / Sub Pi Pi Zero assigned to a rack of devices

https://git.ece.iastate.edu/sd/sddec20-02/-/tree/rackpi-image

Unzip the file raspberry pi image. You should see a .img file (it probably has the known file type icon).
Download etcher from https://www.balena.io/etcher/ and run it.

Insert the sd card for your pi into your computer.

Select the custom img file which you extracted from the zip archive, select the sd card you want to use
for the pi, and click flash.

WARNING: flashing a drive will erase all data on it so make sure you select the correct device.

SDDEC20-02 20

https://www.balena.io/etcher/

Configuring the rackpi

After booting the rack pi you should see its mac address printed in cyan.

Unplug the rackpi and register the rackpi with netreg using its mac address.

Plug the rack pi back in and when you see this menu type C.

When prompted enter the number of leds attached to the raspberry pi.

After that you will be asked for the control node hostname this can be found in the admin interface.

After that the rackpi will check that it can reach the control node if it succeeds it will install the latest
rackpi module and start it. If it fails to configure see troubleshooting.

Assuming all goes well you see the rackpi under device status section in the admin interface.

Troubleshooting

Could not ping 1.1.1.1 you are probably not connected to the internet.

If you get this power off the pi and wait a few minutes it is possible its registration on Iowa States’s
network is still going through. If the issue persists type R in the main menu and use the raspi-config
tool to connect to wifi.

SDDEC20-02 21

Could not ping control node. Check that the machine is running and you have the correct
hostname.

This probably means you entered the wrong hostname. Take the url you use to visit the admin
interface and take the part between the http:// (or https://) and the next / and use that. So for
http://ll.iastate.edu/bla you would use ll.iastate.edu as the hostname.

Configuring the admin interface

To map an LED to a libcal resource go to device management and enter a device id, led id and resource
id from the table of devices. If resource or led is already mapped the existing mapping will be removed.

To rename a raspberry pi or change the number of leds attached to it click on the name in the admin
interface to get to the pi page. Then just change the appropriate field and click save.

To delete a pi click the delete button. If the pi is still running it will register itself again in a few
minutes.

SDDEC20-02 22

https://ll.iastate.edu/bla

To assign a color to a libcal state go to the color mappings page select the color with the color picker
and click the save button next to it. As the libcal api detects new states they will be added to this page.

The unknown state is a fallback any unmapped led or color that has not been set will default to the
unknown color.

Data will be fetched automatically from libcal every 5 minutes and the status of the current resources
will be fetched every 30 seconds. The fast fetch, which happens every 30 seconds, should be good
enough for most of the time but it will not detect if resources have been added or deleted. You can
track the progress of fetches on the dashboard and see when the last fetch took place.

SDDEC20-02 23

Appendix II: Schematics & Design Documents

Figure 6.1: LED Master list Case Schematic

SDDEC20-02 24

Figure 6.2: LED PVC Pipe Case Schematic

SDDEC20-02 25

Figure 6.3 Laptop Rack reference model

Figure 6.4: Administrative Interface Main Page

SDDEC20-02 26

